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Radiative Transfer Single-Scattering Albedo 
Estimation with a Super-Pad  Approximation of 
Chandrasekhar's H-Function 
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Three algorithms for evaluating the single-scattering albedo within an isotropically 
scattering, semi-infinite medium are developed for measurements external to the 
medium with narrow and wide field-of-view detectors. Two of the algorithms 
are iterative and require the computation of the Chandrasekhar H-function, which 
can be done with the super-Pad6 approximation, while the third algorithm is an 
explicit one that requires no iteration. 

1. INTRODUCTION 

The objective of this work is twofold: (a) to formulate the solution of 
an inverse radiative transfer problem for estimating the single-scattering 
albedo m of a large (effectively semi-infinite) isotropic scattering medium 
that is illuminated uniformly over its surface, and (b) to introduce another 
way of approximately evaluating the Chandrasekhar (1960) H-function that 
can be used in the solution of the inverse problem. 

Depending on the detector(s) available and the direction(s) of the source 
illuminating the surface, different algorithms are needed to solve the inverse 
problem for ~ .  For an azimuthally symmetric, multidirectional incident illu- 
mination, Siewert (1978) developed a succinct set of equations for determining 

from angular moments of the outgoing radiance measured over all polar 
angles. But to minimize the need for a multidirectional source and to reduce 
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the number of measurement directions, we will assume a normally incident 
illumination, as is typical of many laboratory-scale experiments done with a 
beam-expanded laser illuminating a flat surface of a target. If the H-function 
is computed, only two measurements then are needed, the inward and outward 
fluxes [as measured with a flat-surface hemispherical (2"rr) field-of-view 
(FOV) detector] or the normally-directed inward and outward radiances (as 
measured with a narrow FOV detector). If the outward flux and normally 
directed outward radiance are measured along with the inward flux or nor- 
mally direct inward radiance (which should be identical), then the two algo- 
rithms involving the H-function can be combined in such a way that no H- 
function computations or iterations are required in an explicit algorithm. The 
two iterative algorithms apparently are new, while the explicit algorithm is 
a special case of one derived by Siewert (1979). 

The choice of which algorithm to use is thus dictated by the detectors 
available. If only a flux or radiance detector is available, then one of the two 
iterative algorithms obtained here may be useful, provided the/-/-function 
can be readily computed. Several approximate methods have been used to 
evaluate the H-function (Abu-Shumays, 1966, 1967; Kelley, 1978, 1980, 
1982), including a low-level Pad6 approximation (Abu-Shumays, 1967). Typi- 
caUy such approximations are computationally more rapid than highly accu- 
rate methods, such as that developed by Dunn et al. (1982). 

A super-Pad6 approximation technique is explored here as a possible 
computational technique for the H-function. This numerical approximation 
method relies on the use of Pad6 approximants to solve the nonlinear inte- 
gral equation 

I ~ H(I~) dlx, z ~ [ -1 ,  0] (1) H(z)  = 1 + H(z) 30 z +-----~ 

where m is the single-scattering albedo and z is a complex variable. An 
important constraint on H(z) is that H - l ( - V o )  = 0, where Vo > 1 is the 
positive discrete eigenvalue of the homogeneous radiative transport equation, 
as given by the positive root of 

~Zln[Z + 1 ] 
T I z - -E - i [  = 1, z ~t [ -1 ,  1] (2) 

In the method of Pad6 approximants (Baker, 1975; Bender and Orszag, 
1978) a function is approximated by a ratio of two polynomials. For a given 
power series 

S(z) = So(z) + S l ( z )m + "'" + S j ( z ) m  J (3) 
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where J = N + M, a Pad6 approximant (PA) is written as 

ao(z) + a l ( z ) m  + "'" + a N ( z ) m  ~ 
[N/M] = 1 + b l ( z ) m  + " '"  + bM(z )m M (4) 

where [N/M] = S(z) + O(~rJ§ Once the coefficients ai(z) and bi(z) have 
been determined, a Pad6 approximant prediction (PAP) for the next coefficient 
in the power series Sj§ follows from the PA. Also, an estimate of the sum 
of the series, i.e., the full Pad6 summation (FPS), can be obtained. The PAP 
and FPS have been applied with remarkable success to the perturbation 
expansions of quantum field theory and statistical mechanics by Samuel et 
aL (1995a, b) and (Ellis et  al., 1996). 

The method of PA can be used to accelerate the convergence of iterative 
solutions of Fredholm-type integral equations. The nonlinear integral equation 
for the H-function in (1) is of a type to which this method can be applied. 
In this instance, the power series expansion is taken in terms of the albedo m. 

Siewert's (1978, 1979) algorithms and the two algorithms that require 
the H-function for solving the inverse problem are given in Section 2. Section 
3 contains a detailed exposition of the numerical algorithms used to evaluate 
the H-function with super-Pad6 approximations and Section 4 provides some 
numerical results for the H-function approximations. 

2. I N V E R S E  A L B E D O  E S T I M A T I O N  A L G O R I T H M S  

The radiation intensity I(x,  Ix) for x -> 0 is taken to be a function of the 
direction cosine Ix measured with respect to the (dimensionless) mean-free- 
path distance x from the surface into the semi-infinite medium. For isotropic 
scattering the radiative transfer equation for the semi-infinite medium is 

= I(x, Ix') dIx',  ~ -~-x t(x, ix ) + t(x, Ix ) -~ x > 0 (5) 

for m < 1, where 

f0 ''ff I(x,  Ix) = I(x, Ix, d~) d 6  (6) 

and d~ is the azimuthal angle measured in the plane perpendicular to the x 
axis. The half-space problem is defined by the incident illumination 

t(o, ~)  = y (~ ) ,  ~ > o (7) 
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and the constraint that l(x, IX) ~ 0 as x --~ oo. Chandrasekhar (1960) has 
shown that the radiation emerging from the half-space is given by 

m f2 H(IX')F(IX')IX' dix', IX > 0 (8) I ( 0 , - i x )  =-~-H(IX) Ix ' + I x 

where H(IX) satisfies equation (1). 
Siewert (1978) showed for the general class of "[3" boundary conditions 

defined by F(IX) = KIX ~, IX > 0, that if various angular moments of the 
emerging radiance I(~)(0, -Ix) are measured, as defined by 

fo E~ ) = I(~)(0, -Ix)ix" dIx (9) 

then w can be estimated from any of the set of equations 

K -  IE ~13) 
m = 4  [K_IE~) + ([3 + 1)_l] 2 , [3 = 0, 1, 2 . . . .  (10) 

Here K is the magnitude of the incoming flux as measured with a 2"rr FOV 
detector or the incoming radiance measured with a normally directed, narrow 
FOV detector. 

A major limitation in using this last equation, however, is that the F(Ix) 
= KIx 13 incident illumination is difficult to achieve experimentally and because 
only the measurement of E~ t~) can be conveniently done with a flat-surface 
hemispherical FOV detector. For this reason we instead force the incident 
illumination to satisfy the normally incident, "~"-boundary condition defined 
by F(Ix) = /C6(Ix - 1), Ix > 0, and observe from equation (8) that the 
emerging radiance I(~)(0, -Ix) is 

I(~)(0, - ix)  = K mH(1) H(Ix) 
2 I x +  1 '  I x > 0  (11) 

Thus with the use of a normally directed, narrow FOV detector that measures 
I (~) (0 ,  - 1) ,  

mH2(1) = 4K-  ll(~)(0, - 1) (12) 

This is an algorithm for implicitly estimating w using only inward- and 
outward-directed narrow FOV detector measurements and computation of 
wile( l ) ,  which can be easily done with the super-Pad~ results of Section 3. 

Another algorithm that could be conveniently implemented is to use a 
2o FOV detector and then measure E] ~), defined similarly to equation (9) 
with F(Ix) = K~(Ix - 1), Ix > 0. From equation (11) it then follows that 

m H 0 )  I ~ H(Ix)IX dIx (13) 
Et ~) = g - - - ~ -  Jo Ix + 1 
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But use of a partial fraction expansion and equation (1) shows that 

wH(1) p . + l  (14) 

where ak = f /  I~kH(ix) dlx. For isotropic scattering (Chandrasekhar, 1960) 

1 re~176 - (1 - m) u2 (15) 
2 

so it follows from the last three equations that a second algorithm for estimat- 
ing w is 

(1 - re)H2(1) = (1 - K-IEI~)) z (16) 

This is an algorithm for implicitly estimating w using only inward- and 
outward-directed 2at FOV detector measurements and computation of (1 
--  w ) H 2 ( 1 ) .  

Finally, from the ratio of equations (12) and (16) it follows that 

1 - w (1 - K-IE]~)) 2 
4K-11(~) (0 ,  --  1) (17)  

This third algorithm, one of Siewert's (1979), is an explicit algorithm that 
does not require computation of H(1), but both the outward-directed narrow 
FOV and 2~ FOV detector measurements and an inward-directed narrow 
FOV or 2"tr FOV detector measurement are needed. The result also can be 
obtained as a special case, for monodirectional illumination and isotropic 
scattering of a half-space, from an inverse radiative transfer equation (McCor- 
mick, 1979) that is a generalization of that of Siewert (1979, equation (31)). 

3. APPROXIMANTS FOR THE H-FUNCTION 

The PA method has been applied in a variety of disciplines. For quantum 
electrodynamics and quantum chromodynamics, for example, the perturbation 
series are divergent and may not even be Borel summable and the coefficients 
in the power series are believed to diverge strongly like Sn = n!Ifn ~, where 
k and ~/are constants that depend on the problem under consideration (Vain- 
shtein and Zakharov, 1994). Yet the PAP works well for QED and QCD and 
also for series generated in statistical mechanics (Samuel et al., 1995a,b; 
Ellis et al., 1996). Perhaps the ability of a sufficiently complicated rational 
function to imitate the analytic structure of some given function accounts for 
this success. For large enough N and M, zeros and poles of any function 
can be exactly reproduced, and branch points and essential singularities 
approximated by a set of poles. 
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To apply the PA method to equation (1) suggests that we rewrite the 
equation as 

fo H(z) = 1 + mH(z) G(z, ~)H(IX) dlx (18) 

Here m can be viewed as the power series expansion parameter. Let the nth 
iterate in the Neumann series solution to this equation be Hn(z) and define 

Once the Sn(z) have been computed for n = 1 to J we construct the PA of 
equation (4). Then the PA method predicts the next term Sj+~(z). In particular, 

G(z, Ix) dix (20a) 

Io' G(z, ~) dl~ G(z, Ix') d~' (20b) 

f l foG(Z,  ix)G(ix, lx')dix'di.L (20c) 

f0 fo G(z, Ix) d~ G(z, IX') dix' G(z, I~") di~" (20d) 

G(z, IX") dix" G(z, IX)G(IX, IX') dix' dix (20e) 

fof  fo + G(z, IX)G(I~, Ix') dix' di~ G(z, IX") dix" (20f) 

fl f01 Io' Ix") d~" + G(z, IX) G(ix, IX') dix' G(IX, dix (20g) 

fo I0 f0' + G(z, IX) G(IX, IX') G(IX', IX") dix" dix' dlx (20h) 

etc. The nesting of the integrals in these terms can be represented by diagrams 
that resemble uncrossed corrections to a propagator in quantum field theory. 
Figure 1 illustrates the diagrams for the terms (20a)-(20h). 

nn+ l ( Z )  - Hn(z) 
S,(z) = (19) 

,ID -n 

So(z) = 1 

sl(z) = fo 

&(z) = Io 

+ 

S3(z) = fo 

+ 
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(hi 

Fig. 1. Diagrams of S.(z) terms in equation (20) for n = 1-3. 

Since we have the means to estimate the next term PAP, and we also 
have error formulas (that include the sign) for the PAP, we can correct the 
PAP to obtain a more precise estimate that we call the super-Pad6 approximant 
prediction (SPAP) defined by 

SN+M+I -- SN+M+I (21)  
l + r  

where SN+M+] is the PAP of  equation (3) and SN+M+I is the SPAP. For the H- 
function for z = 1, the formula for r for the N / M  PAP in equation (21) is 
(Samuel et  al.,  1995a; Ellis et  al. ,  1996) 

r = - M ! B ( B  + 1) . . .  (B + M - 1)/L TM (22) 

where r is the relative error (i.e., the estimate minus the exact, all divided 
by the exact) and (Samuel et  al. ,  1995a; Ellis et  al. ,  1996) 

L = N + M + a M  + b (23) 

In our case the constants B, a, and b were determined by first examining the 
numerical values of $1(1) to $7(1) and comparing the results to those in the 
following equations (Samuel et  al. ,  1995b): 

S.+2 = $2+~1S., [nil]PAP (24) 

2S .S .+1S .+2  - S . - I S ~ + 2  - S3+l 
S.+3 = S~ - S._l S.+l , [n/2]PAP (25) 
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with Sj = 0 for j  < 0. [Formulas for Sn for M = 3 and 4 are also given in Samuel 
et al. (1995b). For general N and M the PAPs are constructed numerically.] We 
then calculated r for the PAPs for small N and M and determined that r is 
given by the error formula (22) with B = 1.34, a = -0 .5 ,  and b = 1.6. We 
then used SN+M+I, applied the PAP again to obtain SN§ and then applied 
the correction again and after using (21) obtained the SPAP SN§ the 
process can be continued indefinitely. 

4. N U M E R I C A L  RESULTS F O R  T H E  H - F U N C T I O N  

Our results for the number of terms in Sn(z) (i.e., diagrams of Fig. 1) 
versus n needed for the H-function for n = 1 to n = 11 are 1, 2, 5, 14, 42, 
132, 429, 1430, 4862, 16796, 58786, etc. For the number of  terms indicated 
we checked our predictions by direct counting for n = 1 to n = 9. The SPAP 
agrees with the direct counting exactly; in fact, when they initially disagreed 
for n = 7 a check revealed an error in the direct counting. Later a direct 
calculation of $8(1) agreed with our estimate to within 0.014%. 

In Table I we give the FPS results for the 3/4, 4/3, and the 4/4. The 
ordinary partial sum (PS) results from equation (3) are also given. It can be 
seen that in all cases the Pad6 results are more precise than the corresponding 
PS results up to n = 7. It should be emphasized that the FPS results use the 
same input as the PS. 

Table II contains the coefficients from n = 0 to n = 15. The results for 
n = 0 -5  were used along with the SPAP to obtain the results for n = 6 and 
7, which agreed with the direct calculation to within <0.1%. The results for 
n = 0 - 7  were then used to obtain the coefficients for n up to 26 by repeated 
application of the super-Pad6 method. 

Table I. H(1) Functions Obtained with Pad6 Approximants and from Partial Sums with 
Seventh-Order Iterations 

Partial 
m Pade34 Pade43 Pade44 sum (PS) "Exact" 

0.3 1.1268438 1 .1268438 1 . 1 2 6 8 4 4  1 .126843  1.126844 
0.5 1.251255 1.251254 1.251257 1 . 2 5 0 9 4 0  1.251259 
0.8 1.597526 1.597457 1.597945 1 . 5 7 1 9 3 7  1.598219 
0.9 1.842901 1.842344 1.846299 1 . 7 4 8 2 3 9  1.850098 
0.95 2.045295 2.043641 2.056968 1 .857371  2.077123 
0.975 2.189267 2.186171 2.212264 1 .918297  2.270984 
0.99 2.299123 2.294248 2.334419 1 . 9 5 7 0 9 0  2.472792 
0.995 2.340862 2.335252 2.382079 1 .970430  2.587346 
1.0 2.385145 2.378988 2.434109 1 .983958  2.907809 
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Table II. Coefficients Sn(l) for H(I) Functions Obtained Directly from Equation (21) 
up to n = 7 and from the Super-Pad6 Approximant Prediction for n --> 8 

n S,,(I) n S,,(1) n S,,(1) 

1 0.693147 10 35.257 19 7224.3 
2 0.804054 11 62.263 20 13300.4 
3 1.096628 12 110.84 21 24549.8 
4 1.626989 13 198.62 22 45434.9 
5 2.544145 14 357.89 23 84357.1 
6 4.125346 15 647.94 24 157341. 
7 6.870243 16 1177.9 25 295683. 
8 11.6787 17 2149.3 26 563063. 
9 20.164 18 3934.6 

Table I l l  gives results for the percent error for the H(1)-funct ion when 
compared with the "exact" results of  Stibbs and Weir (1959). The super- 
Pad6 evaluation of H(1) is a more severe test of the method than for H(~) ,  
0 -- ~ < 1, since in general the full Pad6 summat ion  (FPS) for smaller 
values of ~ are more precise. The FPS is compared with the PS results 

in Table III for the same number  of Sn(1) coefficients, n = 0 - 7 .  It can 
be seen that in all cases the FPS results are much more precise than the 
PS results. 

Table IlL H(I) Functions Obtained from the Super-Pad6 Approximants Prediction 
(SPAP) and Partial Sum (PS) Methods 

m SPAP/FPS PS "Exact" 

0.1 1.03682 1.03682 1.036815 
0.2 1.07864 1.07861 1.078644 
0.3 !. 12684 1.12684 1.126844 
0.4 1.18337 1.18325 1.183380 
0.5 1.25126 1.25094 1.251259 
0.6 1.33540 1.33379 1.335406 
0.7 1.44469 1.43790 1.444745 
0.8 1.59797 1.57195 1.598219 
0.85 1.70433 1.65388 1.704991 
0.9 1.84833 1.74826 1.850098 
0.925 1.94522 1.80082 1.947955 
0.95 2.07339 1.85740 2.077123 
0.975 2.26728 1.91833 2.270984 
0.99 2.46309 1.95713 2.472792 
0.995 2.55935 1.97046 2.587346 
1.0 2.68543 1.98399 2.907809 
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5. CONCLUDING COMMENTS 

A concise way of estimating the single-scattering albedo m has been 
developed, along with an approximate method of computing the Chandra- 
sekhar H-function needed for two of the inverse algorithms. Although in this 
paper we have focused on evaluating algorithms for a normally incident 
illumination (ix = 1), the algorithms also can be extended to nonnormally 
incident illumination (ix < 1), but require azimuthally dependent measure- 
ments (McCormick, 1979); in such cases, our numerical results for the H(ix)- 
function, ix < 1, are even better than shown here. 

The assumption of isotropic scattering is a severe limitation of the 
algorithms for many applications, but estimation of ~ for a general scattering 
law with narrow FOV measurements over only the azimuthal angle would 
be difficult to implement because the algorithms become exceedingly complex 
(Sanchez and McCormick, 1981). 

We believe that the super-Pad6 methods used here may be of practical 
utility in solving linear integral equations as well as other nonlinear inte- 
gral equations. 
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